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ABSTRACT

Recent advancements in cognitive science and multi-round reasoning techniques
for Large Language Models (LLMs) suggest that iterative thinking processes
improve problem-solving performance in complex tasks. Inspired by this, ap-
proaches like Chain-of-Thought, debating, and self-refinement have been applied
to auto-regressive LLMs, achieving significant successes in tasks such as math-
ematical reasoning, commonsense reasoning, and multi-hop question answering.
Despite these successes, the theoretical basis for how multi-round reasoning en-
hances problem-solving abilities remains underexplored. In this work, we investi-
gate the approximation, learnability, and generalization properties of multi-round
auto-regressive models. We show that Transformers with finite context windows
are universal approximators for steps of Turing-computable functions and can ap-
proximate any Turing-computable sequence-to-sequence function through multi-
round reasoning. We extend PAC learning to sequence generation and demon-
strate that multi-round generation is learnable even when the sequence length ex-
ceeds the model’s context window. Finally, we examine how generalization error
propagates across rounds, and show how the aforementioned approaches can help
constrain this error, ensuring outputs stay within an expectation boundary. This
work sheds light on the systemic theoretical foundations of multi-round sequence
learning and reasoning, emphasizing its role in inference complexity.

1 INTRODUCTION

Cognitive science suggests that humans typically require multiple rounds of thinking to arrive at cor-
rect conclusions, especially when dealing with complex problems (Nelson, 1990). Inspired by this
principle, recent multi-round reasoning techniques, such as Chain-of-Thought (Wei et al., 2022b),
debating (Khan et al., 2024), and self-refinement (Madaan et al., 2023b; Liu et al., 2024a), applied
to auto-regressive Large Language Models (LLMs), have achieved significant success across vari-
ous reasoning tasks, including mathematical problem solving (Cobbe et al., 2021), commonsense
reasoning (Talmor et al., 2019), scientific question answering (Clark et al., 2018), and multi-hop
question answering (Yang et al., 2018). This exceptional capability is widely attributed to the in-
context learning abilities of auto-regressive language models (Li et al., 2024a; Yang et al., 2024).

In-context learning ability has led to the conjecture that auto-regressive generative models can sim-
ulate Turing machines (Li et al., 2024b; Merrill & Sabharwal, 2024). Schuurmans (2023) has shown
that large language models, particularly when augmented with memory, can execute complex com-
putational processes that resemble the behavior of Turing machines. Malach (2024) has explored the
theoretical underpinnings of auto-regressive models and their connection to universal computation,
showing that even simple next-token predictors can, under the right conditions, emulate the behav-
ior of Turing machines. Li et al. (2024b) illustrates the solvability of the problems that belong to
AC0, a proper subset of NC0, via Chain-of-Thought. Yet, the existence of some strong assumptions
of these works, such as the dependence on external memory (Schuurmans, 2023), the presence of
Chain-of-Thought in the training data (Malach, 2024), or the infinite number of layers (Yun et al.,
2020), do not explain well the actual working conditions of realistic multi-round language models.
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To make matters worse, the computability perspective does not provide a plausible explanation for
how machine learning models learn. This is because learning ability and reasoning ability are not
inherent properties of a computable class. An extreme example is that even games like Magic: The
Gathering and Super Mario can be Turing complete (Churchill et al., 2020). But we’re not going
to build a generalized AI out of a card game. Beyond the approximation of Turing machines, we
need to understand (1) the ability of multi-round auto-regressive language models to approximate
functions, (2) whether such an ability is learnable, and what its learning complexity is, and (3) the
ability to generalize when inferring with imperfectly-trained language models in reality.

In this work, we systematically investigate why multi-round reasoning can improve the overall large
language model problem-solving capability. Particularly, we study the approximation, learnability,
and generalization abilities of auto-regressive generative models with a limited context window.
Unlike previous theories, this series of studies corresponds closely to real-world scenarios, providing
empirical guidance on training and inference auto-regressive generative language models.

We begin with the approximation ability of auto-regressive Transformers. For the approximation
ability, we show that Transformers with finite context window size are universal approximators
for some steps of a Turing-computable function. Further, we prove that any Turing-computable
sequence-to-sequence function can be approximated by a multi-round auto-regressive generation
process. This demonstrates the feasibility of the current dominant language models for solving
problems. It is worth noting that although this finding does not directly explain the problem-solving
ability of language models, it is a cornerstone of the generalizability of auto-regressive models.

Next, we turn our attention to learnability, which is a critical aspect of understanding how auto-
regressive language models, particularly in a multi-round reasoning context, gain their problem-
solving capabilities. We first expand probably approximately correct (PAC) learning (Valiant, 1984)
to finite-size window next token prediction, and to auto-regressive sequence generation. Beyond
that, we generalize the finite-window sequence learnability to the case of exceeding the window size
by means of multi-round language generation. The results show that even if the required sequence
length exceeds the maximum window of the auto-regressive language model, the model remains
learnable for long sequence complex problems. The sample complexity required to learn the ability
to auto-regressively predict an entire long sequence will increase dramatically compared to simply
making a single-word prediction. Further, we show that training with the multi-round generation
paradigm has an exponential impact on the sample complexity w.r.t the number of rounds R.

Then, we focus on the generalization ability through multi-round reasoning. In particular, we show
that the generalization error of the model grows with the propagation rounds. Through our analysis,
we can conclude that as the number of rounds of model generation increases, eventually the answers
it obtains will diverge. Nevertheless, we can still constrain the state of the intermediate process, e.g.,
by providing some hints in the multi-round dialogues, to control the generalization of the model
and induce it to the answer we want. We point out that prompting tricks like Chain-of-Thought,
self-refinement, and multiple rounds of dialogue serve to constrain the generalization error during
the inference process so that the answers generated are within our expectations.

Contributions. Overall, we make the following contributions:

• We comprehensively investigate the approximation, learning, and generalization capabili-
ties of finite context auto-regressive language models from a theoretical perspective.

• We theoretically identify a dramatic increase in the sample complexity required to induce a
finite window next-word prediction into sequence generation and remark that this increase
can be mitigated by introducing multiple rounds of sub-sequence generation.

• We theoretically analyze the inter-round propagation mechanism of the generalization error
during the multi-round generation process. We also point out that without intervention in
the generation of multiple rounds, their cumulative error will not guarantee controllability.

The remaining paper is structured as follows: In Section 2, we discuss related research on multi-
round language generation, language model learning, and generalization capabilities, followed by
an introduction to some relevant lemmas and definitions in Section 3. We theoretically analyze the
approximation capabilities of multi-round Transformers in Section 4, the learnability of language
generation with auto-regressive language models in Section 5, and the error propagation of general-
ization in Section 6. We conclude and provide some insights and future directions in Section 7.
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2 RELATED WORKS

2.1 MULTI-ROUND LANGUAGE MODEL GENERATION

It has been widely noted that with generative language models, it is possible to get the desired
answer through multiple rounds of interaction. Based on this core idea, several types of multi-round
generation methods have been proposed to solve a wide range of problems. These methods include:

(1) Chain-of-Thought. Wei et al. (2022b) proposes chain-of-thought (CoT), a prompt strategy that
guides the LLM to generate regularized intermediate reasoning steps that lead from the initial ques-
tion to the final answer. CoT has been proven to enable LLMs to solve complex problems including
dynamic programming, whereas non-CoT prompts fail to do so (Feng et al., 2023). Empirically,
variants of CoT have been proposed, including faithful CoT that tries to avoid LLMs lying in the
reasoning stage (Lyu et al., 2023), multimodal CoT that enables CoT for vision contexts (Zhang
et al., 2023), and tree-of-thought (ToT) that builds up a complex reasoning tree (Yao et al., 2023).

(2) Self-correction and Self-refinement. LLMs’ self-correction and refinement abilities have re-
ceived significant attention recently (Madaan et al., 2023b; Shinn et al., 2023; Kim et al., 2023).
Through explicit multi-round reflection, self-correction iteratively improves the accuracy, reliabil-
ity, and robustness of LLM outputs, especially in complex reasoning tasks where the CoT reasoning
process might be flawed (Madaan et al., 2023b), by eliminating hallucinations (Liu et al., 2024b).

(3) Multi-Agent Debating. Apart from improving a single-agent LLM system, another line focuses
on the collaboration of multiple LLM agents (Li et al., 2023; Wei et al., 2023; Hao et al., 2023).
Findings suggest that multi-agent collaboration through both debating or even majority voting can
often outperform single-agent LLM with explicit constraints (Huang et al.; Wu et al., 2023). Khan
et al. (2024) further shows that debating with more persuasive LLMs results in better answers.

Overall, the essence of these methods is to impose internal or external interventions on multi-round
sequence generation, which is an optimization constraint in the generalization process.

2.2 THEORETICAL ANALYSIS ON LANGUAGE MODELS

Approximation Ability of Transformers. The approximation capabilities of Transformer archi-
tectures have been extensively studied in recent years. Yun et al. (2020) establishes that Trans-
formers are universal approximations of continuous permutation equivariant sequence-to-sequence
functions. Wei et al. (2022a) introduces a statistically meaningful approximation, demonstrating
that overparameterized neural networks can approximate Boolean circuits and Turing machines
with generalization guarantees. Schuurmans (2023) proves that Transformers can simulate Tur-
ing machines in the presence of conditional memory. In terms of limitations, Dong et al. (2021)
demonstrates that pure attention mechanisms could suffer from rank collapse, leading to a loss of
expressive power with increased network depth. Hahn (2020) analyzes the theoretical limitations
of self-attention in neural sequence models, highlighting challenges in modeling hierarchical struc-
tures. Cai (2024) proves that the composition of words in a finite vocabulary can approximate any
continuous function in a compact domain. Unlike their setting, we show that a finite context Trans-
former can approximate a Turing Machine by up to infinite rounds of generation.

Simulating Turing Machine with Neural Networks. Numerous scholars have proposed using
neural networks to simulate Turing machines to verify the computational power of neural net-
works (Siegelmann & Sontag, 1992; Pérez et al., 2021; 2019; Wei et al., 2022a; Graves, 2014).
Siegelmann & Sontag (1992) point out that recurrent neural networks (RNNs) of infinite precision
can make simulations of Turing machines, implying the Turing-completeness of RNNs. Chung &
Siegelmann (2021) further implements a finite precision RNN simulation of Turing Machine using
an external memory module. However this Turing-complete property cannot be directly inherited to
a finite-window Transformer, because the recurrent learning model in RNNs essentially aggregates
information from time 0. While the Transformer model via self-attention does not pass on the in-
formation, but rather, it is in the form of KV cache (Ge et al., 2024), which results in information
beyond the context window being encoded only on newly generated tokens, a completely different
computational paradigm from RNNs. For the Turing completeness of Transformer, Bhattamishra
et al. (2020) prove that finite-precision Transformers are not Turing-complete. Pérez et al. (2021)
prove that only hard-attention can be Turing complete. But Transformers still can approximate the
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simulation of Turing Machine within a certain margin of error (Wei et al., 2022a). Yet, these stud-
ies have not examined the relationship between approximation precision and quantization precision.
We reveal in this work the approximation of a Turing machine that can be reached through multiple
rounds of Transformer’s generation, as well as a high-level relationship between the precision of
Transformer’s numerical quantization and the approximation error tolerance.

Learnability and Sample Complexity. Probably Approximately Correct learning is a framework
in computational learning theory that provides a formal way to understand how well an algorithm
can learn a target function from a set of examples. The concept was introduced by Valiant (1984)
and helped analyze how quickly and accurately a learning algorithm can generalize from data. For
sequence modeling, Schuurmans & Greiner (1995) proposes a kind of sequential PAC learning
where online stopping rules are used to minimize the number of samples required for PAC learning.
Gavaldà et al. (2006) studies the PAC learnability of hidden Markov models. Malach (2024) extends
this framework to the prediction of the next token, but there are assumptions of infinite context-
awareness, as well as ignoring error propagation. So far, to the best of our knowledge, there are no
previous works that study the PAC learnability and sample complexity of long sequence generation
with a context window-limited auto-regressive generative model. Making up for the shortcomings of
the above works, in this paper, we study the PAC learnability of sequence generation and apply it to
a multi-round generation task to theoretically qualitatively study the effect of multi-round generation
on the sample complexity of the learning of the long sequence generation task.

3 PRELIMINARY

Let Σ be a finite alphabet, and let Σ∗ denote the set of all finite sequences over Σ. Consider a
distribution D over input-output sequence pairs (x, y) ∈ Σ∗ × Σ∗. Let f : Σ∗ → Σ∗ be a target
sequence-to-sequence function belonging to a class F .

Limited Context Window. An auto-regressive model with a limited context window of size k
generates an output sequence y = (y1, y2, . . . , yn) token by token. At each time step t, the model
predicts the next token yt based solely on a context window ct of at most k tokens. This context win-
dow ct consists of a combination of: Up to the last k tokens from the input sequence x, specifically
xt−1
max(1,t−k). and previously generated output tokens yt−1

1 , limited to the most recent k tokens.

Formally, the context window at time t is defined as:

ct =
(
xt−1
max(1,t−k), y

t−1
max(1,t−k)

)
,

where xb
a denotes the subsequence (xa, xa+1, . . . , xb).

Sequencial PAC Learnability. A class F is efficiently Sequential PAC learnable if there exists an
efficient algorithm that finds with high probability a sequence generator with low error. We formally
capture this definition as follows:

Definition 3.1 (Sequencial PAC learnability). A class F of sequence-to-sequence functions is PAC-
learnable with an auto-regressive model of context window size k if there exists a learning algorithm
A and a polynomial function p(·, ·, ·) such that for any ϵ > 0, δ > 0, and target function f ∈ F ,
given a sample of at least m ≥ p(1/ϵ, 1/δ, k) i.i.d. examples {(x(i), y(i))}mi=1 drawn from D, the
algorithm A, operating under the context window limitation, outputs a hypothesis h such that with
probability at least 1− δ:

Pr
(x,y)∼D

[d(h(x), y) ̸= 0] ≤ ϵ,

where d is distance measure of discrepancy between predicted sequence h(x) and true sequence y.

Rademacher Complexity is a measure to quantify the capacity of a class of functions based on its
ability to fit random noise, which is formally represented in the following Definition 3.2. It helps to
analyze how well a model class can learn from the data.

Definition 3.2. [Rademacher Complexity (Bartlett & Mendelson, 2002)] Let F be a class of real-
valued functions on a domain X , and let {x1, x2, ..., xn} be a set of n independent and identically
distributed (i.i.d.) samples drawn from a distribution over X . The empirical Rademacher complexity

4
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of the class F with respect to the sample {x1, x2, ..., xn} is defined as:

R̂n(F) = Eσ

[
sup
f∈F

1

n

n∑
i=1

σif(xi)

]

where σ1, σ2, ..., σn are independent Rademacher random variables, which take values in {−1, 1}
with equal probability 1

2 . And Eσ denotes the expectation over these random variables.

4 APPROXIMABILITY

4.1 TRANSFORMER CAN APPROXIMATE FINITE STEPS OF TURING-MACHINE

In this section, we present our theory showing that auto-regressive Transformers with a limited
context window are universal approximators of any Turing computable functions. Although the
simulation of a Turing machine does not guarantee that the model will always find the correct answer,
it is a necessary condition for the language model to be able to effectively generate the expected text.
By demonstrating that the Transformer’s computational power is capable of approximating a Turing
machine, we show that it reaches Turing Machine’s limits when handling complex sequential tasks.

We begin by encoding the computation of a corresponding Turing machine M that computes f .
Each computation step of M is represented as a configuration Ct, encapsulating the current state,
tape contents, and head position. These configurations form a sequence C0, C1, . . . , CT , where
C0 is the initial configuration based on the input x, and CT , where: C0 = {x, q0,#}, Ct+1 =
δ(Ct), and CT = {·, qaccept, ·} encodes the halting configuration producing f(x), represents the
halting configuration yielding f(x), where # represents empty tape. The transition function δ of
M updates only a finite region of the tape based on the current state and symbol under the head:
δ : Γ∗QΓ∗ → Γ∗QΓ∗, where Γ∗ is empirical tape symbol space, and Q is TM state space

We first simulate the finite steps of a Turing Machine. The following lemmas show that several steps
of the Turing machine can be simulated by an auto-regressive generative Transformer.

Lemma 4.1. Let M be any deterministic Turing Machine that operates in S steps. For any ϵ > 0,
there exists a Transformer model T characterized by a finite number of layers L, layer dimension d,
attention window size k, and quantization levels Q, such that for all computational steps s ≤ S, the
state of T approximates the state of M at step s within an error bound ϵ.

∀ϵ > 0, ∃T with parameters (L, d, k,Q) satisfying

{
d ≥ log2(|Q|) + k · log2(|Γ|),
Q ≥ e

C′′′·L·d·k
ε

such that ∀s ≤ S, d(Hs, ϕ(Cs)) ≤ ϵ.

A key feature of the Turing Machine is its ability to store and access a large amount of informa-
tion via its “Tape”. When Transformers simulate Turing Machines through multi-round generation,
they rely on the attention mechanism to store and retrieve information from previous generations.
This suggests that Transformers can function as dynamic memory systems during the multi-round
process, akin to the way a Turing Machine reads and writes on its tape.

Lemma 4.2. The maximum number of computational steps Smax that T can approximate while
maintaining this error bound scales asymptotically as

Smax ∈ Θ(L · d · k · log(Q)) .

Lemma 4.2 illustrates that a finite-precision, finite-depth, finite-width Transformer has only limited
problem-solving capabilities. We demonstrate Lemma 4.1 and 4.2 in Appendix A and B.

4.2 MULTI-ROUND TRANSFORMERS ARE TURING-MACHINE APPROXIMATOR

We now consider the more far-reaching case: even if the Turing machine does not reach the halting
condition within the Transformer’s maximum generation window, we show that the Transformer can
still approximate the simulation of the Turing machine through multiple rounds of generation.

5
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Theorem 4.3 (Approximability). For any Turing-computable sequence-to-sequence function f :
Σ∗ → Σ∗, and for any error tolerance ϵ > 0, there exists a multi-round sequence-to-sequence
process utilizing an auto-regressive Transformer with a limited context window of size k that ap-
proximates f within error ϵ.

Theorem 4.3 can be inferred by induction directly from Lemma 4.1. The core idea for the proof is to
consider that a Turing machine will halt within a sequence of finite length T , by simulating the Tur-
ing Machine within R = ⌈T/s⌉ rounds and using induction for error propagation, the approximation
error can be controlled within the tolerance. See detailed proof in Appendix C.

Thus, we conclude that any Turing-computable sequence-to-sequence function f : Σ∗ → Σ∗ can
be universally approximated by a multi-round sequence-to-sequence refinement process utilizing
an auto-regressive Transformer with a limited context window of size k, achieving the desired ap-
proximation within error ϵ. Through multi-round generation, the Transformer moves beyond static
one-shot input-output mappings and instead continuously adjusts its generation, similar to how hu-
man reasoning progresses. This dynamic computational ability is crucial for cognitive tasks as it
allows the model to update its internal state and strategy during the process. This means that Trans-
formers, beyond being powerful sequence generation models (e.g., for language translation), could
potentially be applied to complex tasks such as cognitive reasoning, planning, and problem-solving.

5 LEARNABILITY

In Section 4.1, we illustrated the ability of the autoregressive Transformer to approximate a sequence
just like a Turing machine, which is a preliminary indication of the inference potential of language
models. However, we still do not know what scale of training the model needs to undergo to ob-
tain such a capability. In this section, we explore the learning ability of autoregressive models for
sequences of arbitrary length.

To get this point, we aim to demonstrate that auto-regressive sequence models, which possess uni-
versal approximation capabilities, can be sequential PAC-learnable under certain constraints. In
order to ensure that a sequential model learns effectively from finite data, we need to determine the
minimum sample size m required to guarantee that the model’s error on unseen data does not ex-
ceed a specified threshold ϵ with a high level of confidence 1− δ. This involves deriving a bound on
the generalization error using tools from statistical learning theory, such as Rademacher complexity
(Bartlett & Mendelson, 2002) and spectral norm constraints(Bartlett et al., 2017).

5.1 BASIC ASSUMPTIONS AND LEMMAS

We consider an auto-regressive next-token prediction model with a context window size k. At each
time step t, the model predicts the next element based on the previous k elements in the sequence.
The hypothesis class Hk now consists of functions h : Σk → Σ, where Σk ⊂ Σ∗ is context
window of the auto-regressive language model, belonging to the input space. We make the following
assumption:

Assumption 5.1 (Bounded Input Norms). Each element xi in the sequence satisfies ∥xi∥ ≤ Rx,
therefore each input sequence in the context window x ∈ Σk has bounded norm ∥x∥ ≤ Rx

√
k.

This assumption is reasonable because, within a finite dictionary, we can always find a sufficiently
large number, denoted as Rx, such that the norm of a finite-dimensional embedding is less than Rx.

Assumption 5.2 (Lipschitz-Continuous Activation Functions). The activation functions ϕ used in
the neural network are Lϕ-Lipschitz continuous.

This assumption is reasonable because commonly used activation functions such as GELU, ReLU,
etc, conform to Lipschitz continuity.

Assumption 5.3 (Lipschitz-Continuous Loss Function). The loss function ℓ is L-Lipschitz with re-
spect to its first argument and bounded by C > 0.

This assumption is reasonable because commonly used loss functions such as cross-entropy conform
to Lipschitz continuity and are bounded in practice, we will show this in Appendix L.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Assumption 5.4 (Spectral norms (Bartlett et al., 2017)). For layer 1 < l < lmax, the spectral norms
of the weight matrices Wl in the neural network are bounded by a layer Boundary Bl such that
∥Wl∥2 ≤ Bl, and Bspec =

∏lmax
l=1 Bl.

We first consider the learnability of the next token prediction. Within a finite context window k,
consider the generalization bound defined by Rademacher complexity (Bartlett & Mendelson, 2002):

Lemma 5.5 (Rademacher complexity boundary for next token prediction). The Rademacher com-
plexity of the hypothesis class Hk satisifies:

Rm(Hk) ≤
BspecL

lmax−1
ϕ Rx

√
k

√
m

We provide the computation of Rademacher complexity for next-token prediction in Appendix D.

Lemma 5.6. For the standard generalization bound via Rademacher complexity, we have the loss
L(h) with probability at least 1− δ:

L(h) ≤ L̂S(h) + 2Rm(Hk) + C

√
log(1/δ)

2m
,

5.2 SAMPLE COMPLEXITY OF NEXT-TOKEN PREDICTION

Now, we show that in order to obtain the ability to predict the next token, an auto-regressive model
should be trained with at least a certain sample complexity. For the generation of individual to-
kens, we do not consider error propagation for now. This paradigm is consistent with decoder-only
autoregressive model training since each token is determined by up to k previous tokens.

Theorem 5.7 (Sample Complexity for Next-token Learning). To ensure that the expected loss L(h)
does not exceed ϵ with confidence at least 1 − δ, under perfect empirical risk minimization , the
required sample size m must satisfy:

m ≥ 1

ϵ2

[
4L2B2

specL
2(lmax−1)
ϕ R2

xk + 4LBspecL
lmax−1
ϕ RxC

√
k

√
log(1/δ)

2
+

C2 log(1/δ)

2

]
.

The proof of Theorem 5.7 can be done by solving inequality properties L(h) ≤ ϵ. We provide
detailed proof in Appendix E. Specifically, the three terms are Capacity Term, Mixed Term, and
Confidence Term, respectively. The Capacity Term is the dominant term for the sample complexity
needed to reach the window size k, while the Confidence Term denotes the complexity needed to
reach higher learning confidence 1 − δ, and the Mixed Term is a lower-order mixture of these two
terms that does not dominate. The Capacity Term is the dominant term when we consider larger
context window k and moderate confidence level δ. For simplicity, we combine the Mixed Term and
the Confidence Term into one low-order term. Therefore, for single next token prediction, we have
sample complexity as:

m ≥ 1

ϵ2

[
4L2B2

specL
2(lmax−1)
ϕ R2

xk + low order term
]
.

5.3 SAMPLE COMPLEXITY OF SEQUENCE GENERATION

Next, we consider the generation of a sequence of arbitrary length T . When the model gener-
ates sequences over T time steps, the cumulative error over the sequence is of interest. Due
to the dependencies introduced by using the model’s own predictions as inputs in subsequent
time, errors can compound over time. This phenomenon is known as error propagation in
auto-regressive models (Wu et al., 2018). We bound the cumulative error carefully by con-
sidering the worst-case scenario where errors add up linearly so that cumulative error ϵ <∑T

t=0 ϵt. For hypothesis Hk, we recursively define the output at time t to be h(t)(xt) =

h(xt, (h
max(t−k,1)(xmax(t−k,1)), · · · , h(t−1)(xt−1)), starting with h(1)(x) = h(x). By extending

Therorem 5.7 to sequence generation, we have the following:

7
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Theorem 5.8 (Sample Complexity for Sequence Learning). For any sequence of length T, to ensure
that the expected loss L(h(T )) does not exceed ϵ with confidence at least 1− δ, the required sample
size m must satisfy:

m ≥

(
BspecL

lmax−1
ϕ

)2T
ϵ2
(
BspecL

lmax−1
ϕ − 1

)4 [4L2B2
specL

2(lmax−1)
ϕ R2

xk + low order term
]
.

Theorem 5.8 tells us that the sample complexity of learning a sequence is far higher than the pre-
diction of a single token. This complexity grows exponentially with the length of the sequence.
The proof of Theorem 5.8 can be found in Appendix F. We next consider that if the learning of a
sequence of length T is performed in R rounds, where each round involves generating a sequence
of length T/R, its sample complexity is affected by R. 1

Theorem 5.9 (Sample Complexity for Multi-Round Sequence Learning). For any sequence of
length T, if the sequence is dismantled to the R rounds learning, to ensure that the expected loss
L(h(T )) does not exceed ϵ with confidence at least 1− δ, the required sample size m must satisfy:

m ≥

(
BspecL

lmax−1
ϕ

) 2T
R +2

·R2

ϵ2(BspecL
lmax−1
ϕ − 1)4

[
4L2B2

specL
2(lmax−1)
ϕ R2

xk + low order term
]
.

The essence of Theorem 5.9 is that decomposing a large sequence learning problem into multiple
rounds can significantly reduce the sample complexity required for effective learning. In multi-round
training, the model learns R smaller sequences of length T/R per round, effectively distributing the
task across rounds. This reduction in the learning burden for each round minimizes the potential
for error propagation and avoids the exponential growth of sample complexity typically associated
with longer sequences, as seen in Theorem 5.8. By breaking down the sequence, the single-round
complexity decreases exponentially with R, while the cumulative complexity grows polynomially.
This balance leads to an overall more efficient learning process, ensuring that the required sample
size m for a given confidence 1− δ and error threshold ϵ becomes more manageable. The proof of
Theorem 5.9 is provided in Appendix G. This insight opens a path toward reducing the complexity
of sampling, thereby optimizing training regimes in auto-regressive sequence models.

6 GENERALIZATION ABILITY

In this section, we discuss the propagation of the generalization error between each round of a
multi-round sequence generative model. The generalization ability of an auto-regressive generative
language model determines its ability to solve real problems by continuous generation for practical
reasoning tasks. We focus on the inter-round propagation of errors when generating a long sequence
via R-rounds, and how the accumulation of these errors acts.

6.1 THE PROPAGATION AND CUMULATION OF ERROR

We first consider the case where our model is generated in the r-th round with an aggregate error
due to the dependence on the previously generated contexts. In this process, we consider the effect
that the error of the previous round has on the current round.
Lemma 6.1 (Aggregate Error). For an auto-regressive generative model over R rounds, the gener-
alization bound of the aggregate error for each round r satisfies:

Lr(hr) ≤
r∑

i=1

 r∏
j=i+1

γj

(L̂m,i(hi) + ϵi

) ,

1It is important to note that, the difference between generating T tokens via R rounds and generating T
tokens in 1 round is that the 1-round generation looks for T-independent tokens directly in the dictionary to
complete the composition of the sequence, whereas the R round generation generates shorter sequences, and
the learning of such shorter sequences requires a smaller sample complexity (by Theorem 5.8), but a certain
amount of sample complexity to complete the reassembling of the shorter sequences. The idea of Divide and
Conquer Cormen et al. (1994) is used here, although not exactly the same.
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where Lr(hr) = E(x(r),y(r))∼D(r) [ℓ(hr(x
(r)), y(r))] is the loss of the model’s output sequence in the

r-th round from the expected output. L̂m,i(hi) is the empirical loss computed on m samples. The
γr quantifies the impact of errors from round r − 1 on round r. See Appendix H for proof.
Theorem 6.2 (Cumulative error). For an auto-regressive generative model over R rounds, the gen-
eralization bound of the cumulative error satisfies:

L(hR) =

R∑
r=1

λrLr(hr) ≤
R∑
i=1

Λi

(
L̂m,i(hi) + ϵi

)
.

where Λi =
∑R

r=i Gr,i represents the total influence that the generalization error at round i has on
the cumulative error across all subsequent rounds r ≥ i, λr are non-negative cumulative weights
with

∑
λr = 1. And here Gr,i = λr

∏r
j=i+1 γj captures the influence of the generalization error at

round i on the loss at round r. Specifically, Gr,i accounts for the cumulative error for how aggregate
errors propagate from round i through subsequent rounds up to round r. See Appendix I for proof.

6.2 CUMULATIVE ERROR INCREASES AS ROUNDS GROWS

We need to note that, in the real world, models often do not guarantee zero empirical loss
(L̂m,i(hi) > 0) due to limitations of existing optimization methods, model architecture, etc. Let’s
first assume that the error impact factor γ = γr is uniform between each round, also a uniform
influence factor λr = λ,∀r ∈ {1, · · · , R} and a uniform lower bound η ≥ L̂m,i(hi)+ ϵi for simpli-

fication. Denote the upper bound of cumulative error L(hR) as L̄(hR) =
∑R

i=1 Λi

(
L̂m,i(hi) + ϵi

)
.

We now observe the trend of the cumulative error upper bound L̄(hR) generated by R-rounds
evolves as the number of rounds R gradually tends to infinity.
Theorem 6.3 (Divergence of Cumulative Error Upper Bound). As the generation rounds R increase
to infinity, the upper bound of generation cumulative error L(hR) satisfies:

lim
R→∞

L̄(hR) = lim
R→∞

ηλ

1− γ

R∑
i=1

(
1− γR−i+1

)
→ ∞.

Theorem 6.3 implies that there is no supremum on the cumulative error as rounds R increases.
This means that, in reality, considering models with limited accuracy and limited training, we do
not always get the results we expect using multiple rounds of inference. This may sound like a
disappointing result, suggesting that if the model is allowed to keep generating round by round,
its final generated content can be uncontrollable. But the good news is that, for most practical
scenarios, the rounds are typically finite, hence the cumulative error is within an acceptable range.
This suggests that even though the content the auto-regressive language model generates in a finite
number of rounds may not be the precise solution to the problem that we expect, it is at least to a
degree relevant to a specific topic that we expect. See Appendix J for proof of Theorem 6.3.

6.3 MULTI-ROUND GENERATION TECHNIQUES AS INTERVENTION

We now consider the use of techniques, such as Chain-of-Thought (Wei et al., 2022b) or self-
correction (Madaan et al., 2023a), and multi-agent dialog (Khan et al., 2024) to intervene in the
generation process of language models. Chain-of-thought restricts the intermediate steps in multi-
ple rounds of generation by means of a prompt template of the solution idea, in order to block the
effect of errors in this round on the subsequent generation. Self-correction limits the effect of er-
rors by constantly making multiple small adjustments to the results obtained in the previous round.
Multi-agent dialog, on the other hand, limits the aggregate error by the information given by other
agents, thus reducing the error propagation. It is worth noting that these tricks are ultimately a kind
of generative process intervention to reduce γr to γ′ at certain rounds.
Theorem 6.4. If we allow intervention several times during the generation process by making γr
decrease to γ′, then let hi,r be the number of hint rounds between i+ 1 and r. It can be shown that
the reduction in cumulative error can be given by:

∆L(hR) =

R∑
i=1

(1− κi) Λi

(
L̂m,i(hi) + ϵi

)

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

where κi = Er∼µi

[(
γ′

γ

)hi,r
]

, µi is a probability distribution over r defined by: µi(r) =
λrγ

r−i

Λi
.

Theorem 6.4 means that if we obtain a good intervention such that the error propagation at certain
rounds is effectively controlled by a smaller amount to γ′, the cumulative error of sequence genera-
tion will be effectively controlled. To achieve effective control over the cumulative error, i.e. large
cumulative error reduction ∆L(hR), we expect a smaller κi. This can be accomplished in two ways:
(1) Improving the quality of hints: A good hint can effectively block error propagation in a single-
round generation, leading to a smaller γ′, eventually smaller κi. (2) Increase the number of hints:
By increasing the number of hints between round i to r, we will get a larger hi,r, which ultimately
leads to a decrease in κi in average regarding i. See Appendix K for proof of Theorem 6.4.

7 CONCLUSION

In conclusion, this work provides a comprehensive theoretical foundation for understanding the
capabilities of multi-round reasoning in auto-regressive large language models. We have systemati-
cally explored the approximation, learnability, and generalization properties of these models, high-
lighting their potential to solve complex problems through iterative reasoning.

Findings. We demonstrate that Transformers with a finite context window can serve as universal
approximators for Turing-computable functions, offering insights into their robust problem-solving
capabilities in real-world tasks. Additionally, we have extended the PAC learning framework to ac-
count for sequence generation tasks, revealing the complexities involved in learning long sequences
when context exceeds the model’s window size. Moreover, our analysis of the generalization error
in multi-round generation reveals that, without proper interventions, error accumulation could lead
to divergence in the model’s outputs. Techniques like Chain-of-Thought offer viable strategies to
mitigate this, ensuring that the generated sequences remain within expected bounds.

Practical Insights. Our contributions not only advance our theoretical understanding of auto-
regressive generative language models but also provide practical insights into improving model
performance through multi-round reasoning interventions. For the model training stage, in order
to reduce the sample complexity of training on long sequences, one can consider providing some
decomposition methods for very long and complex task sequences during language model training,
so that the long sequences are decomposed into multiple rounds of training on short sequences. In
the inference process of the model, when we design a method that makes the model perform multi-
round thinking, we should give more consideration to how to interrupt the propagation of cumulative
errors to make the generated content more in line with our expectations.
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A PROOF OF LEMMA 4.1

A.1 PROOF SKETCH

To prove the Lemma 4.1, we will:

1. Define an Encoding Function ϕ that maps TM configurations Ct to Transformer hidden
states Ht.

2. Demonstrate that each Transformer layer T (i) can simulate one TM step.

3. Ensure the accurate encoding function ϕ.

A.2 ENCODING FUNCTION ϕ

For all computational steps s ∈ {0, 1, 2, . . . , S}, the Transformer’s hidden state Hs approximates
the TM’s configuration Cs within the error bound ϵ. Formally,

∀s ∈ {0, 1, 2, . . . , S}, d(Hs, ϕ(Cs)) ≤ ϵ

where ϕ : {Cs} → Rd is an encoding function that maps the TM’s configuration to the Trans-
former’s hidden state space. Pérez et al. (2021)’s conclusion ensures the existence of such a mapping
ϕ.

Definition A.1. The encoding function ϕ of TM configurations is defined as:

ϕ(Cs) = [st ⊕ 0ds ]⊕ St,

where st is a one-hot representation of the current state, 0ds is a zero vector to match the dimensions,
and St is the one-hot representation of tape symbols for up to k contexts with the current head
position and their positional representation.

This function ensures:

• Injectivity: ϕ(Ct) ̸= ϕ(Ct′) for Ct ̸= Ct′ .

• Surjectivity: Every Ht corresponds to some Ct.

To demonstrate Definition A.1, we first clarify the TM configuration. Formally, a TM configuration
Ct at time t consists of:

• Current State qt: We define The state of the TM at time t as qt ∈ Q, where Q is a finite
state set.

• Tape Contents Γt: A mapping from tape positions at time t to symbols in Γ, where Γ is a
finite tape alphabet.

• Head Position ht: The position of the tape head at time t.

In order to construct the encoding function, we need to consider TM’s state embedding, tape’s
content embedding and position embedding.

(1) To get the state embedding, we assign a unique one-hot vector e(q) ∈ R|Q| to each state qt ∈ Q:

e(qt) = [0, . . . , 1, . . . , 0]T ,

where the 1 is at the position corresponding to state qt.

(2) To get the tape content’s embedding, we first assign a unique one-hot vector e(γ) ∈ R|Γ| to each
tape symbol γ ∈ Γ:

e(γ) = [0, . . . , 1, . . . , 0]T ,
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with the 1 at the position corresponding to symbol γ. Then we consider an acceptance window of
size k, (which is the Transformer’s max number of context tokens that can be dealt with simultane-
ously) centered at the head position ht:

Tt =
[
e(γht−⌊k/2⌋), . . . , e(γht

), . . . , e(γht+⌊k/2⌋)
]
∈ Rk×|Γ|.

This window captures the tape symbols around the head position.

(3) Finally we include a global positional encoding p(i) ∈ Rdp for each relative position i within
the window:

Pt = [p(−⌊k/2⌋), . . . , p(0), . . . , p(⌊k/2⌋)] ∈ Rk×dp .

The positional encoding helps the model distinguish positions within the acceptance window.

For each position, we concatenate the tape symbol embedding and its positional encoding:

St =
[
e(γht−⌊k/2⌋)⊕ p(−⌊k/2⌋), . . . , e(γht

)⊕ p(0), . . . , e(γht+⌊k/2⌋)⊕ p(⌊k/2⌋)
]
∈ Rk×(|Γ|+dp),

where ⊕ denotes concatenation.

Similarly, we create the encoding for the current state qt:

st = e(qt) ∈ R|Q|.

Finally, the full encoding ϕ(Ct) is obtained by forming a sequence of length n = k + 1 (state plus
tape symbols):

ϕ(Ct) = [st ⊕ 0ds
]⊕ St,

where 0ds
is a zero vector to match the dimensions.

For easier understanding of the following parts, we denote the sequence as:

ϕ(Ct) = [x0, x1, . . . , xk] ,

where x0 = st⊕0ds
∈ Rd, and xi = e(γht−⌊k/2⌋+i−1)⊕p(−⌊k/2⌋+ i−1) ∈ Rd for i = 1, . . . , k.

For simplicity, assume d is sufficiently large (we will define later in Appendix A.3.1) to accommo-
date all concatenated vectors without loss. The d is also used to construct the hidden dimension of
the Transformer, ensuring that embeddings and positional encoding fit within the hidden state.

A.2.1 TRANSFORMER LAYER AS TM STEP SIMULATOR

In this subsection, we explore a correct but not necessarily optimal simulation scheme for the TM
step. Each Transformer layer T (i) performs the following operations to simulate one TM step:

A standard Transformer layer consists of:

• Multi-Head Self-Attention (MHSA) which computes attention over the input sequence.

• Feed-Forward Network (FFN) which applies a non-linear transformation to the outputs of
the MHSA.

• Add & Norm which are residual connections and layer normalizations.

Our plan is to design the MHSA and FFN to simulate the TM’s transition function.
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A.2.2 SELF-ATTENTION AND FFN COMPUTATION FLOW

Let’s start with a quick introduction to Self-Attention. The self-attention mechanism computes
attention scores between elements of the input sequence. Given an input sequence of vectors X =
[x0, x1, . . . , xk] whcih is consistent with ϕ(Ct), the self-attention computes:

Q = XWQ, K = XWK , V = XWV ,

where WQ,WK ,WV ∈ Rd×d are projection matrices. Then the attention score is given by:

αi,j =
qi · kj√

d
+Mi,j ,

where qi ∈ Q,kj ∈ K, and Mi,j is the attention mask, and αi,j is the unnormalized attention score.
Then:

ai,j =
exp(αi,j)∑k
l=0 exp(αi,l)

,

where ai,j is the normalized attention weight. The final Attention output is given by:

Attention(X)i =

k∑
j=0

ai,jvj .

The FFN is typically defined as:

FFN(u) = W2 · σ(W1u+ b1) + b2,

where: W1 ∈ Rh×d and W2 ∈ Rd×h are weight matrices, b1 ∈ Rh and b2 ∈ Rd are biases, and σ is
an activation function (e.g., ReLU).

A.2.3 CONSTRUCTION OF TRANSFORMER LAYER TO SIMULATE TM STEP

For TM simulation, we need to design the attention mechanism so that the state embedding x0

attends to the tape symbol at the head position xih , where ih = ⌊k/2⌋ + 1. And the tape symbol
at the head position xih attends to the state embedding x0. While the tape symbols not at the head
position attend only to themselves.

Lemma A.2. A Self-Attention layer is able to exchange numerical value of position 0 and ih, where
ih = ⌊k/2⌋+ 1.

Proof. For this propose, we then make the following construction:

First, we define the attention mask M ∈ R(k+1)×(k+1) as:

Mi,j =

{
0, if (i = 0 and j = ih) or (i = ih and j = 0) or (i = j),

−∞, otherwise.

Then we assume WQ = WK = WV = I (identity matrix), and biases bQ = bK = bV = 0.
Therefore:

qi = xi, kj = xj , vj = xj .

Following the computation flow of Self-Attention, the attention scores are:

αi,j =

{
xi·xj√

d
, if Mi,j = 0,

−∞, if Mi,j = −∞.

Since the embeddings are orthonormal, xi · xj = 0 unless xi = xj . Therefore:
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• For i = 0 and j = ih,

α0,ih =
x0 · xih√

d
.

• For i = ih and j = 0,

αih,0 =
xih · x0√

d
.

• For i = j,

αi,i =
xi · xi√

d
=

∥xi∥2√
d

=
1√
d
.

• All other
αi,j = −∞.

Due to the mask and orthogonality, the attention weights after the Softmax become:

• For i = 0:

a0,j =

{
1, if j = ih,

0, otherwise.

• For i = ih:

aih,j =

{
1, if j = 0,

0, otherwise.

• For i ̸= 0, ih:

ai,j =

{
1, if j = i,

0, otherwise.

Therefore, the attention score will be:

• At position i = 0:
Attention(X)0 = a0,ihvih = xih .

• At position i = ih:
Attention(X)ih = aih,0v0 = x0.

• At other positions i ̸= 0, ih:

Attention(X)i = ai,ivi = xi.

We now consider the existence of residual connection, then the final output of self-attention will be:

• At position i = 0:
u0 = x0 + Attention(X)0 = x0 + xih .

• At position i = ih:

uih = xih + Attention(X)ih = xih + x0.

• At other positions i ̸= 0, ih:

ui = xi + Attention(X)i = xi + xi = 2xi.

17
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We will design the FFN such that, when considering the residual connection, the hidden state hi at
each position i correctly represents the updated TM configuration.

The general strategy is that, at Position i = 0, the FFN output FFN(u0) will be e(qt+1)− e(qt), so
that:

h0 = u0 + FFN(u0) = [e(qt) + other terms] + [e(qt+1)− e(qt)]

resulting in h0 = e(qt+1) + other terms. While at Position i = ih, the FFN output FFN(uih) will
be e(γ′

ht
)− e(γht

), so that:

hih = uih + FFN(uih) = [e(γht
) + other terms] + [e(γ′

ht
)− e(γht

)]

resulting in hih = e(γ′
ht
) + other terms. At Other Positions i ̸= 0, ih, the FFN output FFN(ui) will

be zero, so hi = ui, keeping the embeddings unchanged.
Lemma A.3. ∃ a FFN s.t. FFN(u0) = e(qt+1)− e(qt), FFN(uih) = e(γ′

ht
)− e(γht), and hi = ui

for i ̸= 0, ih.

Proof. We start with constructing the first layer.

(1) For the neurons that is updating state embedding at i = 0, in which for each transition (qt, γht
) →

qt+1, we allocate one neuron. We denote the neuron index as n(qt, γht
) for n ∈ 1, 2, · · · , Ntrans. Let

the weights w(n)
1 entries corresponding to e(qt) to be +1, p(0) to be +1 and the bias b(n)1 = −1.5,

and therefore we have:

zn = w
(n)
1 · u0 + b

(n)
1 = 1(e(qt)) + 1(p(0)) + (−1.5) = 0.5.

The neuron activates (since zn > 0) only if the input contains e(qt) and p(0).

(2) For the neurons that is updating state embedding at i = ih, in which for each transition
(qt, γht

) → γ′
ht

, we allocate one neuron. We denote the neuron index as n′(qt, γht
) in Ntrans + 1 to

2Ntrans Let the weights w(n′)
1 entries corresponding to e(qt) to be +1, p(ih) to be +1 and the bias

b
(n′)
1 = −1.5, and therefore we have:

zn′ = w
(n′)
1 · uih + b

(n′)
1 = 1(e(qt)) + 1(p(ih)) + (−1.5) = 0.5.

The neuron activates only if the input contains e(qt) and p(ih).

(3) For each dimension j in d, we allocate one neuron to pass through the input. Their neuron index
n′′(j) are from 2Ntrans + 1 to 2Ntrans + d The weights: w(n′′)

1 entries corresponding to w
(n′′)
1j = 1,

and wn′′

1k = 0 for j ̸= j, and the bias b(n
′′)

1 = 0

These neurons always activates since ui has a positive component at position j.

Then we construct the second layer.

(1) For those weights mapping state update neurons to outputs, in which for neurons n(qt, γht):

For those weights in W2, if it is in the row corresponding to e(qt+1), then

W
(e(qt+1)),n
2 = 1,

if it is in the row corresponding to e(qt), then

W
(e(qt)),n
2 = −1.

(2) The same reasoning leads to: for those weights mapping tape symbol update neurons to outputs,
in which for neurons n′(qt, γht):

For those weights in W2, if it is in the row corresponding to e(γ′
ht
), then

W
(e(γ′

ht
)),n′

2 = 1

if it is in the row corresponding to e(γht
), then

W
(e(γht )),n

′

2 = −1
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For neurons n′′(j), we set W (j),n′′(j)
2 = 0 (we set the output to zero for the main embeddings). We

also set the other entries in W2 as zero. The bias b2 is always 0 in the second layer.

Therefore:

• At position i = 0:
FFN(u0) = e(qt+1)− e(qt)

• At position i = ih:
FFN(uih) = e(γ′

ht
)− e(γht

)

• At other positions i ̸= 0, ih:
FFN(ui) = 0

We have eliminated the effects of residual linking here by constructing Self-Attention and FFN.

A.2.4 ITERATIVE LAYER APPLICATION

Apply T (i) sequentially for S layers to simulate S TM steps:

Ht+1 = T (1)(Ht)

Ht+2 = T (2)(Ht+1)

...

Ht+S = T (S)(Ht+S−1)

Each application corresponds to one TM step, updating the Transformer’s hidden state to reflect the
new TM configuration.

A.3 ENSURING ACCURATE SIMULATION

In this subsection, we address the requirements for ensuring that the transformer accurately simulates
the Turing Machine (TM) without errors and overlaps. These requirements involve careful control
over the encoding space, error accumulation from quantization, and the implementation of the TM’s
transition function. Here, we explore precision constraints on correct simulation in the case of binary
representations rather than one-hot representations.

A.3.1 UNIQUENESS OF ENCODING

To avoid overlap between the representations of different TM configurations, the hidden state di-
mension d must be sufficiently large. Specifically, the inequality

d ≥ |Q|+ k · |Γ|,

ensures that the hidden state dimension d is large enough to encode the current state, the tape
symbols within the acceptance window, and the tape head position without collision. This guar-
antees that each configuration of the TM is uniquely represented in the transformer’s hidden state
space, minimizing the risk of two distinct TM configurations being encoded into the same hidden
state. In particular, if represented in binary rather than one-hot, the lower bound of d can be further
compressed to

d ≥ log2(|Q|) + k · log2(|Γ|),
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A.3.2 MINIMIZING QUANTIZATION ERRORS

The transformer’s computations are affected by quantization errors due to finite precision. We need
to ensure that these errors do not accumulate beyond an acceptable threshold ε. Assume that the
maximum quantization error per computational step is given by:

δq =
C

Q

where δq is the maximum quantization error per step. C is a constant dependent on the dynamic
range of the variables. And Q is the number of quantization levels.

Over Smax computational steps, the total accumulated quantization error ϵtotal is:

ϵtotal = Smax · δq = Smax ·
C

Q

To ensure that the total error does not exceed the acceptable tolerance ε:

ϵtotal ≤ ε =⇒ Smax ·
C

Q
≤ ε

Solving for Q:

Q ≥ C · Smax

ε

This inequality precisely relates Q, Smax, and ε without using approximate equalities.

From Lemma 4.2, we have:

Smax = Θ(L · d · k · log2 Q).

Substituting Smax into the inequality for Q:

Q ≥ C ′ · L · d · k · log2 Q
ε

.

This inequality involves Q on both sides. To solve for Q, we can consider the properties of expo-
nential functions. Let’s denote, Q = ex , after simplification:

ex ≥ C ′′ · L · d · k · x
ε

,

where C ′′ = C′

ln 2 . For sufficiently large x, the exponential function ex dominates the polynomial
term in the numerator. Therefore, to satisfy the inequality, x must be large enough such that:

ex ≥ poly(x)

Since ex grows faster than any polynomial function of x, the inequality will hold for large x.

Therefore, we conclude that:

ex ≥ C ′′ · L · d · k · x
ε

implies that x (and thus Q = ex) must scale exponentially with L·d·k
ε .

Given above, we establish that:
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Q ≥ e
C′′′·L·d·k

ε

where C ′′′ is a constant that absorbs C ′′ and other constants.

A.3.3 CORRECT IMPLEMENTATION OF TRANSITION FUNCTION δ

For each transformer layer to simulate one TM step, it must correctly implement the TM’s transition
function δ, which is of the form:

δ(qt, γht
) = (qt+1, γ

′
ht
, D)

where γ′
ht

is the new symbol to write, and D ∈ {L,R} denotes the tape head movement direction.

The transformer must meet two conditions to ensure accurate simulation: (1) The Self-Attention
mechanism should accurately attend to the tape symbol under the head position ht and nearby cells
in the acceptance window. (2) The Feed-Forward Network (FFN) must correctly map the state
and symbol (qt, γht

) to the new state qt+1, updated symbol γ′
ht

, and head movement D. These
requirements ensure that each transformer layer faithfully simulates the TM’s transition function for
every step of the simulation.

A.4 COMBINING THE REQUIREMENTS

With the simulation construction in A.2, combining the requirements in A.3, we conclude that:

∀ϵ > 0, ∃T with parameters (L, d, k,Q) satisfying

{
d ≥ log2(|Q|) + k · log2(|Γ|),
Q ≥ e

C′′′·L·d·k
ε

such that ∀s ≤ S, d(Hs, ϕ(Cs)) ≤ ϵ.

B DEMONSTRATE LEMMA 4.2

Lemma 4.2 is obvious, and we will only briefly state it here. We aim to derive how the maximum
number of steps Smax that a transformer can simulate scales with respect to the model’s parameters:
the number of layers L, the dimension d, the acceptance window k, and the quantization levels Q.

B.1 NUMBER OF LAYERS L

Since each layer simulates one Turing machine (TM) step, the maximum number of steps Smax
scales linearly with the number of layers L. We assume that in the transformer model simulating
a TM, each layer corresponds to one computational step of the TM. At each layer, the transformer
updates the TM’s configuration from step t to step t + 1. Therefore, the total number of steps that
can be simulated is directly proportional to the number of layers. Therefore, the number of steps
Smax is given by: Smax = Θ(L)

B.2 DIMENSION d

Higher dimensions allow more detailed representations of the TM’s configuration, reducing the risk
of overlap between states. In a d-dimensional space, the maximum number of mutually orthogonal
vectors (representing unique configurations) is at most d. As the simulation progresses, more dis-
tinct configurations need to be represented without interference. Therefore, the number of unique,
orthogonal configurations Nconfig is at most d. The maximum number of steps before significant
overlap or interference occurs scales linearly with d, leading to the conclusion: Smax = Θ(d)

B.3 ACCEPTANCE WINDOW k

A larger acceptance window allows the transformer to process more tape symbols simultaneously.
The acceptance window k represents the number of positions the transformer can attend to at each
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step. In simulating a TM, the tape head may need to access multiple symbols around its current
position. A larger acceptance window k enables the transformer to incorporate more context at
each step, reducing the number of steps required to propagate information and mitigating error
accumulation. The speed at which information propagates is proportional to k. Thus, the ability to
process more symbols per step enhances the simulation’s depth, giving the result: Smax = Θ(k)

B.4 QUANTIZATION LEVELS Q

Higher quantization levels reduce numerical error, allowing more steps to be simulated before ac-
cumulated error becomes prohibitive. Quantization levels Q relate to the numerical precision of the
transformer’s computations. The numerical precision increases logarithmically with Q, specifically
Precision = log2(Q). As a result, higher precision reduces the per-step numerical error ε, which
accumulates over S steps. The accumulated error after S steps is approximately S · ε. To keep the
total error below a threshold εmax, the number of steps Smax is bounded by Q. Since the precision
scales as log(Q), the maximum number of steps scales logarithmically with the quantization levels:
Smax = Θ(log(Q))

B.5 SCALING RELATIONSHIP DERIVATION

From the mapping of TM configurations to hidden states and the simulation process across multiple
layers, we derive the scaling relationship:

Smax = Θ(L · d · k · log(Q))

This relationship implies that the number of TM steps Smax scales linearly with the number of lay-
ers L, the hidden dimension d, and the acceptance window k, while it scales logarithmically with
the quantization levels Q. More layers allow for more steps, higher dimensions enable more com-
plex configurations, larger windows allow the processing more tape symbols, and higher precision
reduces numerical errors over time.

C PROOF OF THEOREM 4.3

Proof. Lemma 4.1 told us that, since state transition function δ is local,there exists a window size
k sufficient to capture all necessary information to perform s steps of M . Therefore, the auto-
regressive Transformer, constrained by a context window size k, generates the output sequence y in
multiple refinement rounds. Each round r simulates a fixed number s of computational steps of M ,
updating the output from y(r−1) to y(r) by processing the relevant segment of the sequence within
the window k. The total number of required rounds is R = ⌈T/s⌉, ensuring that all computational
steps are covered.

To maintain the overall approximation error within ϵ, the error tolerance is distributed across the R
rounds, assigning an error budget ϵr = ϵ/R to each round.

This ensures that the cumulative error across all rounds does not exceed ϵ. We build it with the
following induction: At round 0, we have y(0) = x correctly encodes the initial configuration
C0. Since no computation has been performed, the initial error is zero: d(y(0), C0) = 0 ≤ ϵ.
Assume that after r−1 rounds, the output y(r−1) approximates the configuration C(r−1)s with error
ϵr−1 ≤ (r − 1)ϵ/R. The error introduced in round r satisfies:

d(y(r), Crs) ≤ d(y(r−1), C(r−1)s) + ϵr ≤ (r − 1)ϵ/R+ ϵ/R = rϵ/R.

Thus, the error after round r is bounded by rϵ/R ≤ ϵ. The auto-regressive Transformer processes
y(r−1) within the context window k to generate y(r), approximating Crs.

By induction, we establish that after each refinement round r, the output y(r) accurately represents
the configuration Crs within the allocated error rϵ/R. Consequently, considering the termination
condition after R = ⌈T/s⌉ rounds, the output y(R) approximates the final configuration CT = f(x)
with:

d(y(R), f(x)) ≤ R · (ϵ/R) = ϵ.
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D RADEMACHER COMPLEXITY OF K-WINDOW NEXT TOKEN PREDICTION

Proof. We start by expressing the empirical Rademacher complexity for Hk:

R̂S(Hk) = Eσ

[
sup
h∈Hk

1

m

m∑
i=1

σih(x
(i))

]
.

Since each h ∈ Hk is Lh-Lipschitz and ∥x(i)∥ ≤ Rx

√
k, we can bound R̂S(Hk) using the Lipschitz

property.

By Talagrand’s contraction lemma(Ledoux & Talagrand, 2013), the standard results on Rademacher
complexity of Lipschitz function over bounded domains, we have:

R̂S(Hk) ≤
Lh

m
Eσ

[
sup

∥h∥Lip≤Lh

m∑
i=1

σih(x
(i))

]
.

The supremum over h can be bounded using the dual norm:

sup
∥h∥Lip≤Lh

m∑
i=1

σih(x
(i)) ≤ Lh

∥∥∥∥∥
m∑
i=1

σix
(i)

∥∥∥∥∥
∗

,

where ∥ · ∥∗ is the dual norm of ∥ · ∥. For Euclidean norms, the dual norm is also the Euclidean
norm. We compute:

Eσ

∥∥∥∥∥
m∑
i=1

σix
(i)

∥∥∥∥∥ ≤

√√√√Eσ

∥∥∥∥∥
m∑
i=1

σix(i)

∥∥∥∥∥
2

.

Since σi are independent Rademacher variables and x(i) are fixed, we have:

Eσ

∥∥∥∥∥
m∑
i=1

σix
(i)

∥∥∥∥∥
2

=

m∑
i=1

∥x(i)∥2 ≤ m(Rx

√
k)2 = mR2

xk.

Therefore:

Eσ

∥∥∥∥∥
m∑
i=1

σix
(i)

∥∥∥∥∥ ≤
√

mR2
xk = Rx

√
mk.

Substituting back into the Rademacher complexity expression:

R̂S(Hk) ≤
Lh

m
·Rx

√
mk = LhRx

√
k

m
.

Taking the expectation over S:

Rm(Hk) = ES

[
R̂S(Hk)

]
≤ LhRx

√
k√

m
.

For a neural network with depth lmax, activation functions with Lipschitz constant Lϕ, and weight
matrices with spectral norms bounded by Bd, the Lipschitz constant Lh satisfies:
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Lh ≤ BspecL
lmax−1
ϕ , where Bspec =

lmax∏
l=1

Bl.

Therefore, the Rademacher complexity of Hk is bounded by:

Rm(Hk) ≤
LhRx

√
k√

m
=

BspecL
lmax−1
ϕ Rx

√
k

√
m

.

E PROOF OF THEOREM 5.7

Proof. Using the standard generalization bound via Rademacher complexity, we have:

L(h) ≤ L̂S(h) + 2Rm(Hk) + C

√
log(1/δ)

2m
,

with probability at least 1−δ, where Rm(Hk) is the Rademacher complexity of the hypothesis class
Hk.

By Lemma 5.5, we have:

Rm(Hk) ≤
BspecL

lmax−1
ϕ Rx

√
k

√
m

.

Substituting the Rademacher complexity into the generalization error bound:

L(h) ≤ L̂S(h) + 2L
BspecL

lmax−1
ϕ Rx

√
k

√
m

+ C

√
log(1/δ)

2m
.

Assuming L̂S(h) ≈ 0 (perfect empirical risk minimization), the inequality simplifies to:

L(h) ≤
2LBspecL

lmax−1
ϕ Rx

√
k

√
m

+ C

√
log(1/δ)

2m
.

To ensure L(h) ≤ ϵ, we require:

2LBspecL
lmax−1
ϕ Rx

√
k

√
m

+ C

√
log(1/δ)

2m
≤ ϵ.

Let’s denote:

A = 2LBspecL
lmax−1
ϕ Rx

√
k,

and

B = C

√
log(1/δ)

2
.

Then the inequality becomes:

A√
m

+
B√
m

≤ ϵ =⇒ A+B√
m

≤ ϵ.
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Solving for m:

√
m ≥ A+B

ϵ
=⇒ m ≥

(
A+B

ϵ

)2

.

Substituting back the expressions for A and B:

m ≥

2LBspecL
lmax−1
ϕ Rx

√
k + C

√
log(1/δ)

2

ϵ

2

.

By simplifying:

m ≥ 1

ϵ2

[
4L2B2

specL
2(lmax−1)
ϕ R2

xk + 4LBspecL
lmax−1
ϕ RxC

√
k

√
log(1/δ)

2
+

C2 log(1/δ)

2

]
.

F PROOF OF THEOREM 5.8

Proof. At time step t, the prediction error depends on the cumulative effect of previous errors:

ϵt ≤ Lmodelϵt−1 + ϵsingle,

where Lmodel = BspecL
lmax−1
ϕ is the Lipschitz constant of the model with respect to its inputs, cap-

turing how input errors affect the output. And ϵsingle is the inherent error at each step due to model
imperfections. We unroll the recursion to express ϵt in terms of ϵsingle:

ϵt ≤ Lt−1
modelϵ1 + ϵsingle

t−2∑
i=0

Li
model.

Assuming ϵ1 = ϵsingle (initial error), we get:

ϵt ≤ ϵsingle

(
Lt−1

model +

t−2∑
i=0

Li
model

)
= ϵsingle

(
Lt−1

model +
Lt−1

model − 1

Lmodel − 1

)
.

Simplifying:

ϵt ≤ ϵsingle ·
Lt

model − 1

Lmodel − 1
.

The cumulative error is the sum over all time steps:

ϵcumulative =

T∑
t=1

ϵt ≤ ϵsingle

T∑
t=1

Lt
model − 1

Lmodel − 1
.

⇓

ϵcumulative ≤ ϵsingle ·
1

Lmodel − 1

(
T∑

t=1

Lt
model − T

)
,
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where

T∑
t=1

Lt
model = Lmodel ·

LT
model − 1

Lmodel − 1
.

Therefore:

ϵcumulative ≤ ϵsingle ·
1

Lmodel − 1

(
Lmodel ·

LT
model − 1

Lmodel − 1
− T

)
.

This expression captures the exponential growth of errors due to the recursive dependence in the
model. To ensure ϵcumulative ≤ ϵ, we need:

ϵsingle ≤ ϵ ·
(

1

Lmodel − 1

(
Lmodel ·

LT
model − 1

Lmodel − 1
− T

))−1

.

From our Theorem 5.7, the required sample size to achieve ϵsingle at each time step is:

m ≥ 1

ϵ2single

[
4L2B2

specL
2(lmax−1)
ϕ R2

xk + low order term
]
,

Substituting the expression for ϵsingle Theorem5.7:

m ≥

(
ϵ ·
(

1

Lmodel − 1

(
Lmodel ·

LT
model − 1

Lmodel − 1
− T

))−1
)−2 [

4L2B2
specL

2(lmax−1)
ϕ R2

xk + low order term
]
.

This expression reflects the impact of error propagation on the required sample size.

We can further simplify by recognizing that when Lmodel > 1, LT
model grows exponentially, and the

term involving T becomes negligible in comparison. Thus, the cumulative error is dominated by:

ϵcumulative ≈ ϵsingle ·
LT

model

(Lmodel − 1)2
.

Therefore, to keep ϵcumulative ≤ ϵ, we require:

ϵsingle ≤ ϵ · (Lmodel − 1)2

LT
model

.

Substituting back Lmodel = BspecL
lmax−1
ϕ , the required sample size becomes:

m ≥

(
BspecL

lmax−1
ϕ

)2T
ϵ2
(
BspecL

lmax−1
ϕ − 1

)4 [4L2B2
specL

2(lmax−1)
ϕ R2

xk + low order term
]
.

G PROOF OF THEOREM 5.9

Proof. Within a single round of length τ = T/R, the error at time step t depends on the errors in
previous steps:
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ϵt ≤ Lmodelϵt−1 + ϵsingle,

Unrolling the recursion within a round, we have:

ϵt ≤ ϵsingle

t−1∑
i=0

Li
model = ϵsingle ·

Lt
model − 1

Lmodel − 1
.

The cumulative error over τ steps in a round is:

ϵround =

τ∑
t=1

ϵt ≤ ϵsingle

τ∑
t=1

Lt
model − 1

Lmodel − 1
.

This sum can be simplified using geometric series, leading to:

ϵround ≤ ϵsingle ·
Lτ+1

model − (τLmodel)− 1 + τ

(Lmodel − 1)2
.

The total cumulative error is the sum over all rounds:

ϵtotal = Rϵround.

To ensure ϵtotal ≤ ϵ, we require:

Rϵround ≤ ϵ.

Substituting the expression for ϵround:

ϵsingle ≤ ϵ ·
(
R ·

Lτ+1
model − (τLmodel)− 1 + τ

(Lmodel − 1)2

)−1

.

The required sample size to achieve ϵsingle is:

m ≥ 1

ϵ2single

[
4L2B2

specL
2(lmax−1)
ϕ R2

xk + low order term
]
,

Substituting the expression for ϵsingle:

m ≥

(
ϵ ·
(
R ·

Lτ+1
model − (τLmodel)− 1 + τ

(Lmodel − 1)2

)−1
)−2

[A+B + C] .

When Lmodel > 1 and τ is not too large, the dominant term in the numerator is Lτ+1
model, and we can

approximate:

ϵround ≈ ϵsingle ·
Lτ+1

model

(Lmodel − 1)2
.

Thus, the total cumulative error is:

ϵtotal ≈ Rϵsingle ·
Lτ+1

model

(Lmodel − 1)2
.
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To satisfy ϵtotal ≤ ϵ:

ϵsingle ≤ ϵ · (Lmodel − 1)2

RLτ+1
model

.

Substituting back into m:

m ≥
(
ϵ · (Lmodel − 1)2

RLτ+1
model

)−2 [
4L2B2

specL
2(lmax−1)
ϕ R2

xk + low order term
]

=

(
RLτ+1

model

ϵ(Lmodel − 1)2

)2 [
4L2B2

specL
2(lmax−1)
ϕ R2

xk + low order term
]
.

Recall that τ = T/R, so:

Lτ+1
model = L

T
R+1

model.

Therefore, the sample size becomes:

m ≥

(
L

T
R+1

model ·R
ϵ(Lmodel − 1)2

)2 [
4L2B2

specL
2(lmax−1)
ϕ R2

xk + low order term
]
.

Simplifying and substituting back:

m ≥

(
BspecL

lmax−1
ϕ

) 2T
R +2

·R2

ϵ2(BspecL
lmax−1
ϕ − 1)4

[
4L2B2

specL
2(lmax−1)
ϕ R2

xk + low order term
]
.

H PROOF OF LEMMA 6.1

Proof. For each r, with probability at least 1− δr:

L(r)(h(r)) ≤ L̂(r)
m (h(r)) + ϵr,

where:

L̂
(r)
m (h(r)) is the empirical loss on m samples at round r, and ϵr = O

(
(B(r))2(L(r))2√

m

)
+
√

log(1/δr)
2m .

Assuming Lipschitz continuity and bounded loss functions, we can express:

L(r)(h(r)) ≤ L̂(r)
m (h(r)) + ϵr + γrL

(r−1)(h(r−1)),

where γr quantifies the impact of errors from round r − 1 on round r.
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Expand the error recursively:

L(r(h(r)) ≤ L̂(r)
m (h(r)) + ϵr + γrL

(r−1)(h(r−1))

≤ L̂(r)
m (h(r)) + ϵr + γr

(
L̂(r−1)
m (h(r−1)) + ϵr−1 + γr−1L

(r−2)(h(r−2))
)

= L̂(r)
m (h(r)) + ϵr + γrL̂

(r−1)
m (h(r−1)) + γrϵr−1 + γrγr−1L

(r−2)(h(r−2))

...

=

r∑
k=1

 r∏
j=k+1

γj

(L̂(k)
m (h(k)) + ϵk

) .

I PROOF OF THEOREM 6.2

Proof. The Cumulative Error:

L(h) =

R∑
r=1

λrL
(r)(h(r)) ≤

R∑
r=1

λr

r∑
k=1

 r∏
j=k+1

γj

(L̂(k)
m (h(k)) + ϵk

) .

Let Gr,k = λr

∏r
j=k+1 γj . Then:

L(h) ≤
R∑

k=1

((
L̂(k)
m (h(k)) + ϵk

) R∑
r=k

Gr,k

)
.

Let Λk =
∑R

r=k Gr,k. Then:

L(h) ≤
R∑

k=1

Λk

(
L̂(k)
m (h(k)) + ϵk

)
.

J PROOF OF THEOREM 6.3

Consider the assumption we made that the error impact factor γ = γr is uniform between each
round, also a uniform influence factor λr = λ,∀r ∈ {1, · · · , R} and a uniform lower bound η ≥
L̂m,i(hi) + ϵi for simplification. Denote the upper bound of cumulative error L(hR) as L̄(hR) =∑R

i=1 Λi

(
L̂m,i(hi) + ϵi

)
.

In this case, we have:

Gr,i = λ

r∏
j=i+1

γj = λγr−i, since γj = γ.

Λi =

R∑
r=i

Gr,i = λ

R∑
r=i

γr−i = λ

R−i∑
s=0

γs = λ
1− γR−i+1

1− γ
, for γ ̸= 1.

From this, it can be easily obtained that, for γ ̸= 1:
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lim
R→∞

L̄(hR) = lim
R→∞

R∑
i=1

Λi

(
L̂m,i(hi) + ϵi

)
.

= lim
R→∞

ηλ

1− γ

R∑
i=1

(
1− γR−i+1

)
→ ∞.

K PROOF OF THEOREM 6.4

Proof. When all γj = γ, Λi simplifies to:

Λi =

R∑
r=i

λrγ
r−i

This is because:

r∏
j=i+1

γj = γr−i

Suppose we change γj to γ′ at certain rounds j ∈ H ⊂ {1, 2, . . . , R}.

Then we define Λmodified
i :

Λmodified
i =

R∑
r=i

λr

 r∏
j=i+1

γj


where:

γj =

{
γ if j /∈ H

γ′ if j ∈ H

We can write:

Λmodified
i

Λi
=

∑R
r=i λr

(∏r
j=i+1 γj

)
∑R

r=i λrγr−i

Let’s define:

δi,r =

∏r
j=i+1 γj

γr−i

Then:

Λmodified
i

Λi
=

∑R
r=i λrγ

r−iδi,r∑R
r=i λrγr−i

= Er∼µi [δi,r]

where µi is a probability distribution over r defined by:

µi(r) =
λrγ

r−i

Λi
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Since γj ∈ {γ, γ′}, we have:

δi,r =

r∏
j=i+1

γj
γ

=

(
γ′

γ

)hi,r

where hi,r is the number of rounds between i+ 1 and r where γj = γ′.

Thus:

Λmodified
i = Λi × Er∼µi

[(
γ′

γ

)hi,r
]

This shows that ,Λmodified
i ≤ Λi, since 0 ≤ γ′

γ ≤ 1.

The cumulative error with original γ is:

L(hR) ≤
R∑
i=1

Λi

(
L̂m,i(hi) + ϵi

)
With the modified γj :

Lmodified(hR) ≤
R∑
i=1

Λmodified
i

(
L̂m,i(hi) + ϵi

)

∆L(hR) = L(hR)− Lmodified(hR) =

R∑
i=1

(
Λi − Λmodified

i

) (
L̂m,i(hi) + ϵi

)
Let:

κi =
Λmodified
i

Λi
= Er∼µi

[(
γ′

γ

)hi,r
]

Then:

Lmodified(hR) =

R∑
i=1

κiΛi

(
L̂m,i(hi) + ϵi

)
The overall reduction is:

∆L(hR) =

R∑
i=1

(1− κi) Λi

(
L̂m,i(hi) + ϵi

)

L LIPSCHITZ-CONTINUITY OF CROSS-ENTROPY

To show that the multi-class cross-entropy loss function is L-Lipschitz with respect to its first argu-
ment and bounded by some constant C > 0, we’ll analyze its properties step by step.
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L.1 DEFINITION OF CROSS-ENTROPY

Definition L.1. For a classification problem with K classes, the multi-class cross-entropy loss is
defined as:

ℓ(p,y) = −
K∑

k=1

yk log(pk)

where y = (y1, y2, . . . , yK) is the one-hot encoded true label vector. So yk ∈ {0, 1} and
∑K

k=1 yk =
1. And p = (p1, p2, . . . , pK) is the predicted probability vector from the model, where each pk ∈
(0, 1) and

∑K
k=1 pk = 1.

Because y is one-hot encoded, only one term in the summation is non-zero:

ℓ(p,y) = − log(pk∗)

where k∗ is the index of the true class.

The loss ℓ(p,y) = − log(pk∗) approaches infinity as pk∗ approaches zero. However, in practice,
the predicted probabilities are never exactly zero due to numerical stability techniques (e.g., adding
a small ε > 0 to predictions). We therefore restrict pk to a closed interval [ε, 1− (K−1)ε] to ensure
all probabilities are valid and sum to one. Since pk∗ ≥ ε:

ℓmax = − log(ε)

Thus, the loss is bounded:

ℓ(p,y) ≤ C = − log(ε)

Definition L.2. A function f is L-Lipschitz continuous with respect to p if:

|f(p1)− f(p2)| ≤ L ∥p1 − p2∥

for all p1,p2 in the domain, and ∥·∥ denotes a norm (e.g., Euclidean norm).
Theorem L.3. The cross-entropy loss function ℓ(p,y) is L-Lipschitz continuous with respect to p
with L = 1

ε .

Proof. The gradient of ℓ with respect to p is:

∇pℓ(p,y) =

(
∂ℓ

∂p1
,
∂ℓ

∂p2
, . . . ,

∂ℓ

∂pK

)
Since ℓ(p,y) = − log(pk∗), the partial derivatives are:

∂ℓ

∂pk
=

{
− 1

pk
if k = k∗

0 if k ̸= k∗

Using the Euclidean norm:

∥∇pℓ∥ =

√√√√ K∑
k=1

(
∂ℓ

∂pk

)2

=

∣∣∣∣− 1

pk∗

∣∣∣∣ = 1

pk∗

Since pk∗ ≥ ε:

∥∇pℓ∥ ≤ 1

ε
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For any two probability vectors p1 and p2, there exists ξ between p1 and p2 such that:

ℓ(p1,y)− ℓ(p2,y) = ∇pℓ(ξ)
T (p1 − p2)

Taking absolute values:

|ℓ(p1,y)− ℓ(p2,y)| ≤ ∥∇pℓ(ξ)∥ ∥p1 − p2∥

Using the bound on the gradient norm:

|ℓ(p1,y)− ℓ(p2,y)| ≤
1

ε
∥p1 − p2∥

Therefore, the Lipschitz constant is:

L =
1

ε
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